Applications 2024-12-08
COURSE DESCRIPTION
Chemical processes play a crucial role in the green transition, from producing sustainable materials to reducing emissions. This course provides a fundamental understanding of chemistry and its application in sustainable solutions.
Course Content
What You Will Learn
Who Is the Course For?
The course is designed for chemists, process engineers, and other professionals in the chemical industry who want to understand and apply sustainable chemical processes.
Language
The course is conducted in English.
Additional information
The course is offered for a fee.
The use of hydrogen is increasing sharply in the world. If you want to know the basics about hydrogen then this is the course for you. What will you learn?You get answers to questions such as: Why is hydrogen interesting? How is hydrogen produced? How is hydrogen distributed and stored? How can hydrogen be handled safely? How is hydrogen used to change to a sustainable and environmentally friendly society? Who is the course for?The course is for anyone who is curious to know a little more about hydrogen. Advanced knowledge of chemistry and physics is enough to keep up. Who are the teachers?Assistant Professor Erik Elfgren, Professor Rikard Gebart, Dr Fredrik Granberg, Dr Cecilia Wallmark, Professor Andrea Toffolo, Professor Xiaoyan Ji, Professor Kentaro Umeki, Luleå Univerity of Technology and Professor Thomas Wågberg, Umeå University.
Virtual commissioning (VC) is a technique used in the field of automation and control engineering to simulate and test a system's control software and hardware in a virtual environment before it is physically implemented. The aim is to identify and correct any issues or errors in the system before deployment, reducing the risk of downtime, safety hazards, and costly rework. The virtual commissioning process typically involves creating a digital twin of the system being developed, which is a virtual representation of the system that mirrors its physical behaviour. The digital twin includes all the necessary models of the system's components, such as sensors, actuators, controllers, and interfaces, as well as the control software that will be running on the real system. Once the digital twin is created, it can be tested and optimized in a virtual environment to ensure that it behaves correctly under various conditions. The benefits of using VC include reduced project costs, shortened development time, improved system quality and reliability, and increased safety for both operators and equipment. By detecting and resolving potential issues in the virtual environment, engineers can avoid costly and time-consuming physical testing and debugging, which can significantly reduce project costs and time to market. The course includes different modules, each with its own specific role in the process. Together, the modules create a comprehensive virtual commissioning process that makes it possible to test and validate control systems and production processes in a simulated environment before implementing them in the real world. Modeling and simulation: This module involves creating a virtual model of the system using simulation software. The model includes all the equipment, control systems, and processes involved in the production process. Control system integration: This module involves integrating the digital twin with the control system, allowing engineers to test and validate the system's performance. Virtual sensors and actuators: This module involves creating virtual sensors and actuators that mimic the behavior of the physical equipment. This allows engineers to test the control system's response to different scenarios and optimize its performance. Scenario testing: This module involves simulating different scenarios, such as equipment failures, power outages, or changes in production requirements, to test the system's response. Data analysis and optimization: This module involves analyzing data from the virtual commissioning process to identify any issues or inefficiencies in the system. Engineers can then optimize the system's performance and ensure that it is safe and reliable. Expected outcomes Describe the use of digital twins for virtual commissioning process. Develop a simulation model of a production system using a systems perspective and make a plan for data collection and analysis. Plan different scenarios for the improvement of a production process. Analyze data from the virtual commissioning process to identify any issues or inefficiencies in the system and then optimize the system's performance. Needs in the industry Example battery production: Battery behaviors are changing over time. To innovate at speed and scale, testing and improving real-world battery phenomena throughout its lifecycle is necessary. Virtual commissioning / modeling-based approaches like digital twin can provide us with accurate real-life battery behaviors and properties, improving energy density, charging speed, lifetime performance and battery safety. Faster innovation (NPI) Lower physical prototypes Shorter manufacturing cycle time Rapid testing of new battery chemistry and materials to reduce physical experiments Thermal performance and safety It’s not just about modelling and simulating the product, but also validating processes from start to finish in a single environment for digital continuity. Suggested target groups Industry personnel Early career engineers involved in commissioning and simulation projects Design engineers (to simulate their designs at an early stage in a virtual environment to reduce errors) New product introduction engineers Data engineers Production engineers Process engineers (mediators between design and commissioning) Simulation engineers Controls engineer System Integration
Energy cycle and basics of redox chemistry - The course will first give an introduction about some fundamental concepts in physics and chemistry that are essential to understand the transfer of energy in living organisms. Photosynthetic organisms as green batteries - The course will then focus on plants and their extraordinary energy metabolism allowing them to store solar energy to power the rest of living organisms as well as our societies. More sustainable future - Through many examples, we will see how photosynthetic organisms can be used to operate a green transition at different levels of our societies. Lectures are mandatory, no exam. On-site. Learning outcomes Get, through well illustrated lectures, a primary contact with the scientific tools and knowledge necessary to understand the concepts of bioenergy. Accessible to Suitable for interested public, primary school teachers, students and all persons out of gymnasium. The course can start as early as Autumn 2026. Further details about the course start and registration will be available soon.
Hydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. Study hoursHydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. SeminarsSeminar lab: December 10th 2025 at 16:00-18:00 Seminar assignments: January 14th 2026 at 16:00-18:00 Entry reqirements180 credits in science/technology, including a basic course in chemistry of 7.5 credits (e.g. Chemical Principles, K0016K). Good knowledge of English, equivalent to English 6 or equivalent real competence gained through practical experience. Target groupProfessionals in industry, academia or institute, everyone that fulfills the criteria is welcome but the course is created for further education.
Why markets for electricity? How do they function? This introductory course explains how incentives shape outcomes in the electricity market. It brings out the implications for businesses and society of electricity pricing in the shadow of the energy transition. The course aims to provide a comprehensive overview of the electricity market's role in ensuring an efficient electricity supply and addressing key public questions, such as What is the purpose of the electricity market? Why do electricity prices vary by location? How can electricity prices surge despite low production costs? Are there alternative ways to sell electricity? Why is international electricity trading important? The course emphasizes the role of economic incentives in shaping market behavior and addresses critical issues such as market power and its consequences. You will also explore the inefficiencies stemming from unpriced aspects of energy supply and the role of regulation in mitigating these inefficiencies. As the global push toward decarbonization accelerates, the course delves into the challenges posed by large-scale electrification, the implications of climate legislation for energy systems, and the impact of protectionist national policies. The course offers a comprehensive introduction to the electricity market, provides you with analytical tools for independent analysis and brings you to the forefront of current energy policy debate. The course will enable you to Describe the interaction between the electricity system and the electricity market. Explain how the electricity market can increase the efficiency of electricity supply, e.g. with respect to market integration. Show how market power reduces the efficiency of the electricity market. Categorize fundamental market imperfections and describe their solutions. Explain economic and political challenges associated with the green transition. Apply economic tools to analyze the electricity market and examine how changes to the electricity system and regulation affect market outcomes. Target group This course is designed for engineers and managers eager to enhance their understanding of electricity markets within the context of the industrial green energy transition. The purpose is to increase the understanding of the scope of the electricity market and its role in achieving efficient electricity supply. Digital seminars The course includes five scheduled digital seminars. The seminars will be recorded to provide flexibility in completing the course, although we highly recommend to participate in the seminars if possible. November 4, 9:15 - 12:00 November 11, 9:15 - 12:00 November 25, 9:15 - 12:00 December 2, 9:15 - 12:00 December 16, 9:15 - 12:00 Study effort: 80 hrs
Kursperiod 1/11 till 19/12 2025 Innehåll Batterivärdekedjan: från processer uppströms till nedströms Åldrande batterier: Hur batterier förändras över tiden och vilka risker det är med. Toxicitet: Fokus på material och deras påverkan på miljö och hälsa. Säkerhetsaspekter: Riskbedömning och hantering av batterier i olika skeden av deras livscykel. Livscykelanalys: Miljö- och hållbarhetsperspektiv. Kursens upplägg Kursen kommer att ske som en synkron onlinekurs (fjärrundervisning) för maximal flexibilitet för deltagarna. Kursen kommer att innehålla onlineföreläsningar, diskussionstillfällen, ett kort individuellt projekt, skriftliga reflektioner. För att slutföra kursen krävs en arbetsinsats på ca 40 h. Du kommer att få kunskap om Kursdeltagaren kommer att lära sig följande: Grunderna för batterisäkerhetsfrågor och toxicitet längs batterivärdekedjan En introduktion till livscykelanalys Kunskaper för hantering av åldrande batterier Vem vänder sig kursen till? Kursen vänder sig till personer inom logistik, automation, energiproduktion och byggsektorn. Främst de som hanterar batterier i fordonsflottor, arbetar med säkerhets- och hållbarhetsfrågor inom fordonsindustrin, arbetar med integration av batterier i lokala och nationella energisystem/infrastruktur. Helst har deltagarna en utbildning inom teknik eller naturvetenskap. Deltagare bör ha vissa förkunskaper om batterier, genom teknisk/naturvetenskaplig universitetsutbildning, eller genom en grundläggande öppen kurs.