Applications 2023-01-12
COURSE DESCRIPTION
Välkommen till ett öppet och nätbaserat utbildningsmaterial som bidrar med kunskap och inspiration för att stödja yrkeslärares undervisning med Hållbar utveckling.
Målgrupp
Verksamma yrkeslärare och yrkeslärarstudenter.
Innehåll
Utbildningsmaterialet baseras på:
Kursmaterialet ger grundläggande kunskap om Hållbar utveckling och en fördjupning i dimensionen Social hållbarhet. Avsikten är också att inspirera till programvisa skolutvecklingsarbeten genom filmer där verksamma yrkeslärare beskriver hur de arbetar med Hållbar utveckling i olika yrkesprogram.
Utbildningsmaterialet består av inspelade föreläsningar som du kan ta del av i den ordning du har behov av. Om du inte tidigare arbetat med Hållbar utveckling i ditt yrkesprogram rekommenderar vi att du tar del av utbildningsmaterialet i följande ordning:
Vid anmälan får du länk till material och inloggningsuppgifter. Mer information om utbildningen.
Medverkande
How can we work with nature to design and build our cities? This course explores urban nature and nature-based solutions in cities in Europe and around the world. We connect together the key themes of cities, nature, sustainability and innovation. We discuss how to assess what nature-based solutions can achieve in cities. We examine how innovation is taking place in cities in relation to nature. And we analyse the potential of nature-based solutions to help respond to climate change and sustainability challenges. This course was launched in January 2020, and it was updated in September 2021 with new podcasts, films and publications. The course is produced by Lund University in cooperation with partners from Naturvation – a collaborative project on finding synergies between cities, nature, sustainability and innovation. The course features researchers, practitioners and entrepreneurs from a range organisations.
How can we shape our urban development towards sustainable and prosperous futures? This course explores sustainable cities as engines for greening the economy in Europe and around the world. We place cities in the context of sustainable urban transformation and climate change. We connect the key trends of urbanization, decarbonisation and sustainability. We examine how visions, experiments and innovations can transform urban areas. And we look at practices (what is happening in cities at present) and opportunities (what are the possibilities for cities going forwards into the future). This course was launched in January 2016, and it was updated in September 2021 with new podcasts, films and publications. The course is produced by Lund University in cooperation with WWF and ICLEI – Local Governments for Sustainability who work with creating sustainable cities. The course features researchers, practitioners and entrepreneurs from a range organisations.
How can we govern consumption and the sharing economy in our cities? This course explores cities, consumption and the sharing economy in Europe and around the world. We connect together the key themes of the sharing economy, cities, governance, consumption and urban sustainability. We explore how the sharing economy can contribute to increasing social, environmental and economic sustainability. And we argue that it is imperative that the sharing economy is shaped and designed to advance urban sustainability. This course was launched in May 2020, and it was updated in September 2021 with new podcasts, films and publications. This course is produced by Lund University in cooperation with partners from Sharing Cities Sweden – a national program for the sharing economy in cities with a focus on governance and sustainability. It features researchers, practitioners and entrepreneurs from a range organisations.
The course on Large Language Models for Industry is designed to cater to the demands of industries amidst the global push for sustainability and green transitions. Large Language Models (LLMs) represent a pivotal technology thatcan revolutionize how industries operate, communicate, and innovate. In this course, participants explore the intricate mechanics and practical applications of LLMs within industry contexts. The course covers the principles and technologies spanning from traditional Natural Language Processing (NLP) to Natural Language Understanding (NLU), enabled through the development of LLMs. Emphasizing industry-specific challenges and opportunities, participants learn to utilize LLMs while considering sustainability concerns. Participants gain valuable insights from adapting LLMs to tackle real-world problems through examples and exercises tailored to industry needs. By the course completion,participants are equipped to leverage LLMs as transformative tools for driving industry innovation and, at the same time, advancing sustainability goals. Scheduled online seminars November 14th 2024, 15:00 - 17:00 December 12th 2024, 15:00 - 17:00 January 9th 2025, 14:00 - 17:00 Entry requirements At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School.
In the era of shift towards green transition, industries face unique challenges and generates numerous opportunities. This course, "Intelligent Asset Management and Industrial AI" is designed to equip professionals with the knowledge and tools necessary to support advanced technologies in achieving environmental sustainability. Industries play a major role in contributing to the global economy that is accompanied with a significant share towards environmental degradation. The growing climatic concerns and degradation of natural resources has urged the need to reduce carbon footprints, minimize waste, and optimize resource utilization such that a green transition is achieved. Intelligent Asset Management and Industrial AI are at the forefront of this transformation offering innovative solutions to enhance operational efficiency, reduce environmental impact and support the industry’s commitment to sustainability. Furthermore, the course can help a professional to optimize the usage of resources, look for energy efficient systems, consider environmental changes, develop sustainable solutions, and integrate advanced technologies towards green transition. This is a problem-based course specific to an industrial sector. The problems can be provided by the course supervisor, or the participants can bring their own problems from their work. Common problems include e.g. asset management by balancing cost against performance, identifying, detecting, predicting, and planning for unexpected outages, disruptions or failures, exploring challenges and opportunities with AI and digitisation, monitoring the condition of industrial assets, and achieving sustainability goals. Target groupThe target group includes individuals working in various industries such as railway, mining, transportation, construction, manufacturing, logistics, energy, and other organizations that are or planning to implement asset management systems. This course can be suitable for professionals ranging from asset managers, maintenance and reliability professionals, operation managers, engineers, project managers, and asset management consultants. Online seminarsDecember 10th at 14.00 to 15.00January 14th at 14.00 to 15.00January 31st at 14.00 to 15.00February 13th at 14.00 to 15.00February 28th at 14.00 to 15.00 Entry requirements Bachelor’s degree of at least 180 ECTS or equivalent, which includes courses of at least 60 ECTS in for example one of the following areas: Maintenance Engineering, Mechanical Engineering, Materials Science, Data Science, Computer Engineering, Civil Engineering, Electrical and Electronics Engineering or equivalent. Or professional experience requirements four to five years of experience in relevant industries.
This course is designed for you who wants to learn more about functional safety of battery management systems. The course will also cover other aspects of safety such as fire safety in relation to Rechargeable Energy Storage Systems (RESS) and associated battery management systems. In the course you will be able to develop skills in principles of Battery Management Systems, Functional Safety as well as of other aspects of safety such as Fire Safety, hazard identification, hazard analysis and risk assessment in relation to battery management systems. It also aims to provide a broader understanding of the multifaceted nature of safety. The course takes about 80 hours to complete and you can do it at your own pace. There are two scheduled meetings: One after five weeks to resolve any queries and another at the end of the course for the course evaluation. The date and time will be provided within a week of starting of course. Target GroupThis course is primarily intended for engineers that need to ensure that battery management systems are safe, reliable, and compliant with industry standards. The course is suitable for individuals with backgrounds in for example functional safety, battery systems, automotive or risk assessment. Entry requirements120 university credits of which at least 7.5 credits in software engineering and 7.5 credits in safety-critical systems engineering or 60 university credits in engineering/technology and at least 2 years of full-time professional experience from a relevant area within industry or working life experience regarding application of functional safety standards in the automotive domain or in other domains. The experience could be validated via a recommendation letter of a manager stating the involvement of the student in the development of functional safety artefacts. Proficiency in English is also required, equivalent to English Level 6.