A government mission to create open online education for climate change. Nine higher education institutions in collaboration to create a wide range of education in dialogue with relevant organizations in business and the surrounding society. The assignment is coordinated by Uppsala University. The aim is to enable shorter further education in relevant areas, such as engineering, science, procurement law, computer science and urban social planning etc. The courses developed are presented here.
61 RESULTS
SHOW
SORT BY:
Learn more about climate change’s impact on society and how you can lead a wide range of transition processes and practically work with climate transitions within different areas. Ongoing and future climate impacts on different parts of society, the attempts to try to build sustainability within planetary boundaries and interconnected international crises’ have created a unique situation concerning the issues’ urgency, complexity and uncertainty. Within this shifting landscape knowledgeable, creative and brave leaders and citizens are necessary to being able to fundamentally change how businesses, regions, municipalities and different organizations work and achieve results. This online course introduces climate science, climate change’s impact on society, different perspectives on the causes and possible solutions to the climate dilemma, climate justice and international agreements, carbon budgets and different climate scenarios, leadership within different contexts on different levels, key areas for successful transitions and different good examples of climate transitions, the individual’s and the collective’s possibilities and responsibilities, and concrete first steps towards transitions work within your work and local context.
The main goal of this course is to teach you basic knowledge and skills in argumentation.You will be engaged in co-constructing evidence-based justifications as well as in analyzing existing justifications in search of argumentation fallacies. Individual work as well as group-based work will allow you to practice. You will analyze climate-related articles (published in scientific literature but also in the news) and will extract the implicit underlying arguments and provide their analysis.Ultimately, this course will help you to develop basic argumentative skills needed to critically join the debate in society on climate goals. Who is the course for?CLIMATE GOALS, ARGUMENTATION, EVIDENCE is aimed at anyone who is interested in moving the first steps into the argumentation domain with the purpose of joining the debate on climate goals.An engineer (but also a politician) is expected to have founded arguments before taking any (climate-related) action. A citizen is expected to have founded arguments before engaging and sustaining any climate-related political agenda. How is the course structured?The course is a 4-week course. Each week mainly focuses on a single Intended Learning Outcome.
If you are interested in learning more about the critical application of sustainability, then this course will be of definite interest. This course considers sustainability from a number of perspectives, particularly how it is approached, interpreted, worked alongside and implemented. The course will be of interest to all who are keen to learn more about sustainability, especially from a critical perspective. The issues focused on include democracy, personal interpretation and cooperation. This is an introductory course within the field of sustainability science with contributions from experts in the field of sustainability. These experts come from across the Baltic Sea Region, including from Poland, Sweden and Lithuania. The course is structured into three parts, beginning with an introduction to the Anthropocene which helps to provide some important context for the course. The second and third chapters focus on the critical issues at play when it comes to sustainability including working for sustainability and being together for sustainability. Upon completion of the course, students can request a digital certificate by contacting pontus.ambros@balticuniv.uu.se
Numerical models are used in every engineering task, from conceptual design to optimization, control, and diagnostics. As the process becomes more complex, data driven models are a powerful tool that allows to quantify relationships between available data and observations, which forms the basis for machine learning. Image recognition, spam filtering, and predictive analytics are some examples of how we can use data driven models. This course provides a simple introduction to fundamental techniques for dimensionality reduction, classification, and regression, which can be applied to all types of engineering problems.
UMA TALKS CLIMATE CHANGE 2022 Climate Adaptation of the Built Environment DESIGNING CYCLES AT 64° Interior Urban Landscapes and the Water-Energy Food Nexus Climate change demands a recalibration of our built environment to become more resilient. Designing Cycles at 64° takes a multi-scalar approach addressing individual building typologies and, exemplarily for climate adaptation of northern climate zones, the city of Umeå with its diverse urban fabric as a whole. The active involvement of all stakeholders in the planning and future use of buildings and open spaces becomes key. How to create spaces that contribute to community building and social interaction while integrating a maximum of ecosystemic services is therefore a central question that demands for implementable methods, tools, processes and design solutions. At 64° latitude, interior landscapes and the water-energy-food nexus offer interesting possibilities to extend growing seasons and diversify crops, to reduce energy consumption while providing hybrid living spaces between inside and outside. By exploring greenhouse extensions and building envelopes as local passive architectural solutions, DC64° sets out to build productive interfaces between the private and public sector, academia involving the disciplines of architecture and urban planning, urban water management, plant physiology and vertical gardening, as well as the general public in a living lab format. Retrofitting the existing building stock, repurposing vacancies and expanding our building performance may accumulatively have a systemic impact both in terms of reducing water and energy consumption, as well as food miles, while buffering existing infrastructure networks and enabling local food production on site. Expanding on Bengt Warne’s Naturhus (1974) and following examples, we anticipate new multifunctional architectural models applicable in various contexts and scales. FORMAT / The program includes an introductory lecture that addresses climate urgencies and potential capacity for change in the context of the built environment the week before the one-day symposium (hybrid format). The symposium brings together practitioners, researchers and educators and consists of five thematic sessions that can be attended as a full day or individually as they are interrelated, yet also function independently (See program link below). INTENDED LEARNING OUTCOMES / Understanding of multi-scalar climate-adapation design approaches within the built environment with a focus on the Nordic context / Reflect on aspects of social sustainability when it comes to transforming buildings and inhabitants from being consumers to becoming producers / Umeå University School of Architecture Presentations Program Nov. 30. For any questions content-related questions please email us cornelia.redeker@umu.se sara.thor@umu.se constanze.hirt@umu.se
Målet med kursen är att ge lärare fortbildning inom ämnet djurvälfärd och hållbarhet. Kursens mål är också att ge lärare inspiration att designa sin egen undervisning, att ge lärare möjlighet att ta till sig ny forskning och att dela med sig av läraktiviteter som kan användas av fler.
Welcome to this course- Economic Sustainability- an introduction. If you are looking for an introduction to this important topic, then this course is for you! The course begins with an introduction to the Anthropocene, before diving into the subject of economic sustainability. This is explored by a number of angles with supporting literature and quizzes. This is an introductory course to sustainability science with a focus on economics. It is created by experts in the field of sustainability. These experts come from across the Baltic Sea Region, including from Lithuania and Poland. You have to finish all stages of each module to finish the course. You have unlimited amounts of tries on the quizzes but you have to get every answer right in order to move on. Upon completion of the course, students can request a digital certificate by contacting pontus.ambros@balticuniv.uu.se
About the course:This course is a collaboration between Uppsala University and the United Nations Development Programme. The course aims to strengthen participants' capacity to contribute actively to the fulfilment of the UN Sustainable Development Goals, the SDGs, in a complex, ever changing, global society. It will do so by clarifying the context of the SDGs in the international community, and by addressing the needed solutions from a both human and technical approach. The course consists of three modules, which will take you around 16 hours to complete. Module 1 will provide you with a wider background context to the SDGs and the aim is that following this module you will have gained insight into how humanity is being brought together. You will have received a basic understanding of the framework of the rules-based world order, within which the SDGs are set, how they link to this framework, as well as on how progress is maintained. Module 2 will provide you with collaborative learning tools and methods of co-creation. It will provide insights on why change fails and suggest planning tools and resources to enable transition from the current state to the desired state. It will show how you can apply some of these tools to foster collaborative innovations addressing sustainability challenges. Module 3 will provide you with current-day insights into the United Nations Development Programme, the UN body that manages and follows up the progress of the SDGs. You will be introduced to practical tools used by the organization to promote SDG fulfilment, the UNDP 7-step methodology, exemplified by a special focus on e-mobility. This online course is stand-alone, but it is also given as an advanced level as a five week course awarding university credits. Target group:The course has been created for those of you who are seeking a more in-depth understanding of the background and international context of the Sustainable Development Goals. It is for those of you who want to work hands-on with sustainable development, to strengthen this capacity, and are interested in both the human and technical side of delivering solutions. Suppose you are interested in the climate agenda and the power of collaboration, as well as curious to learn more about electrification in transportation systems. In that case, this is a course for you.
The battery value chain encompasses the extensive range of processes and industries that contribute to the production and post-use phase of rechargeable batteries for electric vehicles and other applications. Familiarity with all parts of the value chain is important in the growth of the individual parts. A stronger value chain and a greater awareness of its entirety also leads to the development of more sustainable and higher performance batteries that are needed for the ongoing green transition. In this course, we will give an overview of the key activities and industries within the battery value chain, from raw materials to use-phase and recycling. A focus will be on scale-up, linking lab-scale research to production, while additionally considering sustainability aspects in all value chain sectors. Topics Battery value chain overview Sourcing raw materials Critical raw materials and sustainable materials Materials synthesis and scale-up of production Electrode fabrication Cell formats, fabrication, and formation Applications and safety Re-use, recycling, and circularity Course structure This course is fully digital with pre-recorded lectures. The recordings are in Swedish with English subtitles. You can take part in the course in your own pace. You will learn By the end of the course, you will be able to: identify the key processes and industries of the battery value chain, describe the important practices in each part, and relate certain aspects to your existing knowledge and/or experiences. You will be able to discuss aspects of sustainability for each part of the value chain, how the concept of circularity is important, and how these relate to the development of next-generation batteries. Who is the course for? This course is designed primarily for those active in the vehicle industry or other technical fields that have limited knowledge of batteries or related topics. Participants ideally have an educational or professional background in the natural sciences or technology, but the course can also be interesting for those in geology, social sciences, or with links to any battery-relevant industry.