Applications 2025-03-15 - 2025-11-05
COURSE DESCRIPTION
The course is taught in English
Modern Artificial Intelligence (AI) is based on the idea that models can be constructed through training using data. Different design choices regarding both the type of model and the training procedure can be crucial for the final result. This course covers the fundamentals of modeling from the perspective of various uncertainties that may arise.
The course is based on a theory that often serves as a foundation for uncertainty modeling within the fields of artificial intelligence, machine learning, and data science. The goal in these fields is often to extract knowledge and use models for decision-making or prediction. The course addresses key concepts and tools for probabilistic modeling, as well as programming techniques to efficiently handle data and build models. Specifically, so-called probabilistic programming will play a central role as a modeling tool throughout the course.
Who is the course for?
The course is aimed at professionals in industry who want a deeper understanding of uncertainties that can arise during modeling in the AI field.
After completing the course, you will be able to:
Course format
The course is designed to be combined with work, meaning:
The course is delivered online with pre-recorded lectures,
It is a short course (3 ECTS credits) with a study pace of 20% (approximately 8 hours per week over 10 weeks).
The language of instruction can, depending on the course occasion, be either Swedish or English.
If the course is taught in Swedish, some parts may still be conducted in English.
Entry Requirements
If you do not meet the formal entry requirements, you may have your eligibility assessed based on prior learning, knowledge and competencies you have acquired in other ways, such as work experience or other studies. Read more at his.se/sokwiser.
Developed within WISER
This course has been developed as part of the WISER project. We offer tailored courses for digital transformation aimed at professionals. The project is co-financed by the Knowledge Foundation (KK-stiftelsen) within the framework of Expertkompetens. For more information, visit: his.se/wiser.
This course teaches you how to build convolutional neural networks (CNN). You will learn how to design intelligent systems using deep learning for classification, annotation, and object recognition. It includes three modules: Image processing: Introduction of industrial imaging through big data and fundamentals of image processing techniques Deep learning with convolutional neural network: Overview of neural network as classifiers, introduction of convolutional neural network and Deep learning architecture. Deep learning tools: Implementation of Deep learning for Image classification and object recognition, e.g. using Keras.
The rapid development of digital technologies and advances in communications have led to gigantic amounts of data with complex structures called ‘Big data’ being produced every day at exponential growth. The aim of this course is to give the student insights in fundamental concepts of machine learning with big data as well as recent research trends in the domain. The student will learn about problems and industrial challenges through domain-based case studies. Furthermore, the student will learn to use tools to develop systems using machine-learning algorithms in big data.
The course aims to give insights in fundamental concepts of machine learning for predictive analytics to provide actionable, i.e., better and more informed decisions in, forecasting. It covers the key concepts to extract useful information and knowledge from data sets to construct predictive modeling. The course includes three modules: Introduction: overview of Predictive data analytics and Machine learning for predictive analytics. Data exploration and visualization: presents case studies from industrial application domains and discusses key technical issues related to how we can gain insights enabling to see trends and patterns in industrial data. Predictive modeling: consists of issues in construction of predictive modeling, i.e., model data and determine Machine learning algorithms for predicative analytics and techniques for model evaluation.
This course explores the role of intelligent sensor systems in driving sustainability and enabling the green transition. Participants will learn the fundamentals of sensor technologies and their integration into intelligent, distributed systems. Emphasis is placed on applications in energy efficiency, environmental monitoring, and sustainable automation. The course covers topics such as basic sensor technologies, embedded systems, distributed computing, low-resource machine learning approaches, and federated learning for privacy-preserving, decentralized model training across sensor nodes. Through a combination of lectures, practical examples, and hands-on project work, participants will gain experience in designing and deploying intelligent sensor systems tailored to real-world sustainability challenges. The students bring their own case study example as the background for a practical project, through which the student is also finally examined. Recommended prerequisites: At least 180 credits including 15 credits programming as well as qualifications corresponding to the course "English 5"/"English A" from the Swedish Upper Secondary School. Course start: 13 Jan, 2026 More dates will be announced in shortly. Study hours: 80 This course is given by Örebro University.
Understanding and optimizing battery performance is crucial for advancing electrification, sustainable mobility, and renewable energy systems. This course provides a comprehensive overview of battery performance, ageing processes, and modelling techniques to improve efficiency, reliability, and service life. Participants will explore battery operation from a whole-system perspective, including its integration in electric vehicles (EVs), charging infrastructure, and energy grids. The course covers both physics-based and data-driven modelling approaches at the cell, module, and pack levels, equipping learners with tools to monitor, predict, and optimize battery performance in real-world applications. Through this course, you will gain the ability to assess battery health, model degradation, and evaluate second-life applications from both technical and economic standpoints. Course content Battery fundamentals and degradation mechanisms Battery modelling Battery monitoring and diagnostics Operational strategies for battery systems Techno-economic performance assessment Battery second-life applications You will learn to: Explain the principles of battery operation and degradation mechanisms. Develop battery performance models using both physics-based and data-driven approaches. Apply methods for State of Health (SOH) estimation and Remaining Useful Life (RUL) prediction. Analyze key factors influencing battery lifespan economics in different applications. Evaluate battery second-life potential and identify suitable applications. Target group: Professionals in energy, automotive, R&D, or sustainability roles Engineers and data scientists transitioning into battery technologies Technical specialists working with electrification, battery management systems, or energy storage
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology Study effort: 80 hrs