Applications 2024-12-08
COURSE DESCRIPTION
Electric drive systems are central to the transition toward sustainable transport and industrial solutions. Efficient design and implementation of drive systems can reduce energy consumption and improve performance. This course covers the fundamentals of designing and optimizing electric drive systems for various applications.
Course Content
What You Will Learn
Who Is the Course For?
The course is tailored for engineers and developers in the transport and manufacturing industries, as well as professionals working with the electrification of vehicles and industrial systems.
Language
The course is conducted in English.
Additional information
The course includes 65 hours of study and is offered for a fee.
Learn the fundamentals of electromobility in this flexible, teacher-led online course designed for engineers and professionals who want to build a solid understanding of electromobility. Learning Electromobility is a live, teacher-led online course developed by the Swedish Electromobility Centre in collaboration with five leading Swedish universities. Designed for engineers and professionals in the transport and energy sectors, the course supports lifelong learning by offering in-depth knowledge of the technologies and systems that underpin the transition to electric mobility. Spanning ten weeks and divided into five specialised modules, the course covers both personal electric vehicles and electric trucks, ensuring a broad and practical understanding of the entire electromobility ecosystem. You can choose which modules to attend, allowing for a tailored learning experience based on your interests and professional needs. Each module includes preparatory materials, three interactive teaching sessions, and assignments that reinforce learning through real-world applications. When you have completed a module, you will receive a certificate indicating your achievments. The course is administered by Linköping University, which provides the learning platform used in the course. Content The course is divided into five modules, each focusing on a specific aspect of electromobility. Below is a brief overview of the modules: Module 1: EV Energy Management and ControlUnderstand how energy is consumed and managed in electric vehicles. Learn modeling, simulation, and control strategies like Equivalent Consumption Minimization Strategy and dynamic programming. Module 2: Electric Drives and ChargingExplore electric motors, power electronics, and charging systems. Includes design studies and simulation tools for powertrains and infrastructure. Module 3: EV Energy StorageDive into batteries and fuel cells, from electrochemistry to integration and safety. Covers Li-ion, Na-ion, and next-gen storage technologies. Module 4: EV SustainabilityExamine the environmental and societal impacts of EVs. Topics include life cycle analysis, battery recycling, how logistics systems need to be adapted, and how adjusted business models can be made to fit with electrification. Module 5: EV Charging Infrastructure and Grid InteractionLearn about the Swedish power system, smart charging, V2G, and how EVs interact with the grid. Includes economic and regulatory perspectives. Course structure Choose from 5 independent modules, 2 weeks each. There are 3 live sessions per module, 120 minutes each. Each module will have the following timeslots for the session: Monday and Thursday module week 1, Wednesday module week 2. Each session will be between 13:00-15:00, except the very first session that will be between 13:00-16:00, since it includes an introduction to the course. You will learn General learning outcomes for the course: Explain the key technologies and principles underlying electric vehicles, including energy storage, electric drives, and vehicle energy management. Analyze the technical, economic, and environmental impacts of electric vehicle systems across their lifecycle, including integration with the power grid. Evaluate solutions for sustainable electromobility by applying systems thinking to vehicle design, energy usage, charging infrastructure, and societal adaptation. Who is this course for? This course is designed for professionals in the engineering and technology sectors. This course is developed jointly by Chalmers University of Technology, KTH, Linköping University, Lund university and Uppsala University.
Why markets for electricity? How do they function? This introductory course explains how incentives shape outcomes in the electricity market. It brings out the implications for businesses and society of electricity pricing in the shadow of the energy transition. The course aims to provide a comprehensive overview of the electricity market's role in ensuring an efficient electricity supply and addressing key public questions, such as What is the purpose of the electricity market? Why do electricity prices vary by location? How can electricity prices surge despite low production costs? Are there alternative ways to sell electricity? Why is international electricity trading important? The course emphasizes the role of economic incentives in shaping market behavior and addresses critical issues such as market power and its consequences. You will also explore the inefficiencies stemming from unpriced aspects of energy supply and the role of regulation in mitigating these inefficiencies. As the global push toward decarbonization accelerates, the course delves into the challenges posed by large-scale electrification, the implications of climate legislation for energy systems, and the impact of protectionist national policies. The course offers a comprehensive introduction to the electricity market, provides you with analytical tools for independent analysis and brings you to the forefront of current energy policy debate. The course will enable you to Describe the interaction between the electricity system and the electricity market. Explain how the electricity market can increase the efficiency of electricity supply, e.g. with respect to market integration. Show how market power reduces the efficiency of the electricity market. Categorize fundamental market imperfections and describe their solutions. Explain economic and political challenges associated with the green transition. Apply economic tools to analyze the electricity market and examine how changes to the electricity system and regulation affect market outcomes. Target group This course is designed for engineers and managers eager to enhance their understanding of electricity markets within the context of the industrial green energy transition. The purpose is to increase the understanding of the scope of the electricity market and its role in achieving efficient electricity supply. Digital seminars The course includes five scheduled digital seminars. The seminars will be recorded to provide flexibility in completing the course, although we highly recommend to participate in the seminars if possible. November 4, 9:15 - 12:00 November 11, 9:15 - 12:00 November 25, 9:15 - 12:00 December 2, 9:15 - 12:00 December 16, 9:15 - 12:00 Study effort: 80 hrs
Kursperiod 1/11 till 19/12 2025 Innehåll Batterivärdekedjan: från processer uppströms till nedströms Åldrande batterier: Hur batterier förändras över tiden och vilka risker det är med. Toxicitet: Fokus på material och deras påverkan på miljö och hälsa. Säkerhetsaspekter: Riskbedömning och hantering av batterier i olika skeden av deras livscykel. Livscykelanalys: Miljö- och hållbarhetsperspektiv. Kursens upplägg Kursen kommer att ske som en synkron onlinekurs (fjärrundervisning) för maximal flexibilitet för deltagarna. Kursen kommer att innehålla onlineföreläsningar, diskussionstillfällen, ett kort individuellt projekt, skriftliga reflektioner. För att slutföra kursen krävs en arbetsinsats på ca 40 h. Du kommer att få kunskap om Kursdeltagaren kommer att lära sig följande: Grunderna för batterisäkerhetsfrågor och toxicitet längs batterivärdekedjan En introduktion till livscykelanalys Kunskaper för hantering av åldrande batterier Vem vänder sig kursen till? Kursen vänder sig till personer inom logistik, automation, energiproduktion och byggsektorn. Främst de som hanterar batterier i fordonsflottor, arbetar med säkerhets- och hållbarhetsfrågor inom fordonsindustrin, arbetar med integration av batterier i lokala och nationella energisystem/infrastruktur. Helst har deltagarna en utbildning inom teknik eller naturvetenskap. Deltagare bör ha vissa förkunskaper om batterier, genom teknisk/naturvetenskaplig universitetsutbildning, eller genom en grundläggande öppen kurs.
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology Study effort: 80 hrs
Understanding and optimizing battery performance is crucial for advancing electrification, sustainable mobility, and renewable energy systems. This course provides a comprehensive overview of battery performance, ageing processes, and modelling techniques to improve efficiency, reliability, and service life. Participants will explore battery operation from a whole-system perspective, including its integration in electric vehicles (EVs), charging infrastructure, and energy grids. The course covers both physics-based and data-driven modelling approaches at the cell, module, and pack levels, equipping learners with tools to monitor, predict, and optimize battery performance in real-world applications. Through this course, you will gain the ability to assess battery health, model degradation, and evaluate second-life applications from both technical and economic standpoints. Course content Battery fundamentals and degradation mechanisms Battery modelling Battery monitoring and diagnostics Operational strategies for battery systems Techno-economic performance assessment Battery second-life applications You will learn to: Explain the principles of battery operation and degradation mechanisms. Develop battery performance models using both physics-based and data-driven approaches. Apply methods for State of Health (SOH) estimation and Remaining Useful Life (RUL) prediction. Analyze key factors influencing battery lifespan economics in different applications. Evaluate battery second-life potential and identify suitable applications. Target group: Professionals in energy, automotive, R&D, or sustainability roles Engineers and data scientists transitioning into battery technologies Technical specialists working with electrification, battery management systems, or energy storage
Hydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. Study hoursHydrometallurgy is vital for the green transition and the growing production and need for critical metals. In hydrometallurgy, metals are produced with the help of liquids instead of high temperatures, this approach requires less energy and can be used on complex materials. The course provides knowledge about hydrometallurgical processes used for the extraction and recovery of metals from various primary and secondary raw materials. It focuses on the theory behind unit operations such as leaching, separation, and metal recovery, as well as environmental management of waste products. The content is delivered through online-accessible lectures, interactive seminars, guest lectures, and laboratory exercises. Through quizzes, assignments, and presentations, students are trained to apply theoretical principles and understand the technological environmental challenges in the field. The course is designed to enable studies besides daily work. SeminarsSeminar lab: December 10th 2025 at 16:00-18:00 Seminar assignments: January 14th 2026 at 16:00-18:00 Entry reqirements180 credits in science/technology, including a basic course in chemistry of 7.5 credits (e.g. Chemical Principles, K0016K). Good knowledge of English, equivalent to English 6 or equivalent real competence gained through practical experience. Target groupProfessionals in industry, academia or institute, everyone that fulfills the criteria is welcome but the course is created for further education.