Applications 2024-12-08
COURSE DESCRIPTION
Deepening knowledge of advanced techniques and processes for fossil-free steel production is essential for taking the next step toward a carbon-free industry. This course focuses on optimizing and implementing innovative solutions in the manufacturing process.
Course Content
What You Will Learn
Who Is the Course For?
The course is designed for professionals in the steel industry, researchers, and technical specialists with basic knowledge of fossil-free manufacturing who want to deepen their understanding of advanced techniques.
Language
The course is conducted in Swedish and English.
Additional Information
The course includes 60 hours of study and is offered for a fee.
Do you want to learn the basics of Industry 4.0, at your own pace, whenever you want? Then the MOOC (Massive Open Online Course) Introduction to Industry 4.0 is for you. You will learn basic terminology and theory while gaining insight and understanding of the fourth industrial revolution and how it affects us. The MOOC: Introduction to Industry 4.0 is part of MDU's investment in smart production. The course is divided into ten modules, each of which describes different technologies in Industry 4.0. We estimate that it will take about 40 hours to complete the course and it is in English. The MOOC can also give you eligibility to apply for these 3 university courses at Mälardalen University: Internet of things for industrial applications, 5 credits Simulation of production system, 5 credits Big data for industrial applications, 5 credits
This course is taught in Swedish. Lean production consists of a set of principles and techniques, which are included in the business's systems and processes. These can be derived into a particular business philosophy and strategy that encompasses the entire organization's operations. The course lays the foundation for continued broader and deeper studies of how operations are run at the new generation of world-leading companies with a Lean business strategy. This starting course covers the following topics: Strategies and principles for Lean production Stable processes and standardized working methods Design of value streams Pulling and pushing production systems Quality philosophy and quality methodology Teamwork, commitment and participation Management system with PDCA methodology Business collaboration along value flows Transformation to a Lean corporate culture Course structure Five two-day meetings consisting of discussion lectures, practical exercises and analyzes of operations in companies that practice Lean methodology. Course literature Jeffrey Liker, The Toyota Way, Liber, 2009 Modig & Åhlström, This is Lean Petersson et al., Lean turns deviations into success, 2009 Target group People within organizations considering and Lean business strategy. See all courses that KTH Leancentrum offers
In this course, you will learn how data analysis in virtual production can improve your organization's results! Data analytics in virtual production uses advanced techniques to collect, analyze and present data to improve production. This system is designed to help companies optimize their production and increase efficiency. By learning how to model, do scenario analysis and evaluate using industrial software, identify bottlenecks, and use AI methods and applications, you will get all the tools necessary to succeed with a full production analysis. The course is given with flexible start and study pace, but we recommend a study pace of 20 %, which means that the course takes about 8 calendar weeks.
Why markets for electricity? How do they function? This introductory course explains how incentives shape outcomes in the electricity market. It brings out the implications for businesses and society of electricity pricing in the shadow of the energy transition. The course aims to provide a comprehensive overview of the electricity market's role in ensuring an efficient electricity supply and addressing key public questions, such as What is the purpose of the electricity market? Why do electricity prices vary by location? How can electricity prices surge despite low production costs? Are there alternative ways to sell electricity? Why is international electricity trading important? The course emphasizes the role of economic incentives in shaping market behavior and addresses critical issues such as market power and its consequences. You will also explore the inefficiencies stemming from unpriced aspects of energy supply and the role of regulation in mitigating these inefficiencies. As the global push toward decarbonization accelerates, the course delves into the challenges posed by large-scale electrification, the implications of climate legislation for energy systems, and the impact of protectionist national policies. The course offers a comprehensive introduction to the electricity market, provides you with analytical tools for independent analysis and brings you to the forefront of current energy policy debate. The course will enable you to Describe the interaction between the electricity system and the electricity market. Explain how the electricity market can increase the efficiency of electricity supply, e.g. with respect to market integration. Show how market power reduces the efficiency of the electricity market. Categorize fundamental market imperfections and describe their solutions. Explain economic and political challenges associated with the green transition. Apply economic tools to analyze the electricity market and examine how changes to the electricity system and regulation affect market outcomes. Target group This course is designed for engineers and managers eager to enhance their understanding of electricity markets within the context of the industrial green energy transition. The purpose is to increase the understanding of the scope of the electricity market and its role in achieving efficient electricity supply. Digital seminars The course includes five scheduled digital seminars. The seminars will be recorded to provide flexibility in completing the course, although we highly recommend to participate in the seminars if possible. November 4, 9:15 - 12:00 November 11, 9:15 - 12:00 November 25, 9:15 - 12:00 December 2, 9:15 - 12:00 December 16, 9:15 - 12:00 Study effort: 80 hrs
Kursperiod 1/11 till 19/12 2025 Innehåll Batterivärdekedjan: från processer uppströms till nedströms Åldrande batterier: Hur batterier förändras över tiden och vilka risker det är med. Toxicitet: Fokus på material och deras påverkan på miljö och hälsa. Säkerhetsaspekter: Riskbedömning och hantering av batterier i olika skeden av deras livscykel. Livscykelanalys: Miljö- och hållbarhetsperspektiv. Kursens upplägg Kursen kommer att ske som en synkron onlinekurs (fjärrundervisning) för maximal flexibilitet för deltagarna. Kursen kommer att innehålla onlineföreläsningar, diskussionstillfällen, ett kort individuellt projekt, skriftliga reflektioner. För att slutföra kursen krävs en arbetsinsats på ca 40 h. Du kommer att få kunskap om Kursdeltagaren kommer att lära sig följande: Grunderna för batterisäkerhetsfrågor och toxicitet längs batterivärdekedjan En introduktion till livscykelanalys Kunskaper för hantering av åldrande batterier Vem vänder sig kursen till? Kursen vänder sig till personer inom logistik, automation, energiproduktion och byggsektorn. Främst de som hanterar batterier i fordonsflottor, arbetar med säkerhets- och hållbarhetsfrågor inom fordonsindustrin, arbetar med integration av batterier i lokala och nationella energisystem/infrastruktur. Helst har deltagarna en utbildning inom teknik eller naturvetenskap. Deltagare bör ha vissa förkunskaper om batterier, genom teknisk/naturvetenskaplig universitetsutbildning, eller genom en grundläggande öppen kurs.
Batteries and battery technology are vital for achieving sustainable transportation and climate-neutral goals. As concerns over retired batteries are growing and companies in the battery or electric vehicle ecosystem need appropriate business strategies and framework to work with.This course aims to help participants with a deep understanding of battery circularity within the context of circular business models. You will gain the knowledge and skills necessary to design and implement circular business models and strategies in the battery and electric vehicle industry, considering both individual company specific and ecosystem-wide perspectives. You will also gain the ability to navigate the complexities of transitioning towards circularity and green transition in the industry.The course includes a project work to develop a digitally enabled circular business model based on real-world problems. Course content Battery second life and circularity Barriers and enablers of battery circularity Circular business models Ecosystem management Pathways for circular transformation Design principles for battery circularity Role of advanced digital technologies Learning outcomes After completing the course, you will be able to: Describe the concept of battery circularity and its importance in achieving sustainability goals. Examine and explain the characteristics and differences of different types of circular business models and required collaboration forms in the battery- and electric vehicle- industry. Analyze key factors that are influencing design and implement circular business models based on specific individual company and its ecosystem contexts. Analyze key stakeholders and develop ecosystem management strategies for designing and implementing circular business models. Explain the role of digitalization, design, and policies to design and implement circular business models. Plan and design a digitally enabled circular business model that is suitable for a given battery circularity problem. Examples of professional roles that will benefit from this course are sustainability managers, battery technology engineers, business development managers, circular developers, product developers, environmental engineers, material engineers, supply chain engineers or managers, battery specialists, circular economy specialists, etc. This course is given by Mälardalen university in cooperation with Luleå University of Technology Study effort: 80 hrs