COURSE DESCRIPTION
The course consists of three parts that introduce and explore the design of extended realities along different axes: a framing perspective, illustrating what XR is, how it has evolved, and how designing XR differs from traditional digital design practices; a methodological perspective, detailing those XR-specific theory and methods that address XR design issues; and a practical perspective, exploring best practices and concrete design activities through direct application of these to a case.
Each part consists of lectures, readings, supervision, and an assignment centered on the specific topics discussed in the part of the course.
Assignments are carried out by students individually and will be peer-reviewed first and then discussed with the teachers and the class using a design critique approach.
Would you like to know what Industry 4.0 is about? Then this course is for you! In the course, we look at enabling technologies of Industry 4.0 from a human and industrial perspective. The course covers many topics and you will learn the basic terminology related to Industry 4.0 as well as insight and understanding of the Fourth Industrial Revolution and how it is set to affect industry and individuals.
The aim of this course is that students will learn about the analysis, design, and programming of deep learning algorithms. The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se. About the course Applied Deep Learning with PyTorch, 5 credits Who is this course for?This course provides the theoretical and practical aspects of deep neural networks. It is intended for students with a background in computer science and engineering. What will you learn from this course?Students will learn about the analysis, design, and programming of deep learning algorithms. The course has two modules: theory and practice. The theoretical content covers basic principles of multi-layer perceptions, spatio-temporal feature extraction with convolutional neural networks (CNNs), and recurrent neural networks (RNNs), classification and regression of big data, and generating novel data samples using generative models. The practical sessions cover the basics of programming with PyTorch. For instance, image classification and semantic segmentation using CNNs, future image frame prediction with RNNs, and image generation with generative adversarial networks. What is the format for this course?Instruction type: Teaching is in English and fully online. It consists of lectures, computer exercises, and project work. In the computer exercises, the student solves small problems using deep learning models. After programming various exercises, the participants will develop an advanced deep learning project. Participants will be encouraged to bring their own data. High-end GPU machines can be provided for the exercises and project.
The course is part of the programme MAISTR (hh.se/maistr) where participants can take the entire programme or individual courses. The course is for professionals and is held online in English. Application is open as long as there is a possibility of admission. The courses qualify for credits and are free of charge for participants who are citizens of any EU or EEA country, or Switzerland, or are permanent residents in Sweden. More information can be found at antagning.se. About the course Critical design and practical ethics for AI, 3 credits Who is this course for? Artificial Intelligence (AI) is being increasingly implemented and used in society today. It has already proven to have an impact on the individual, organization and society, and this impact will most likely only increase. Therefore, it is important to understand the ethical issues that may arise from use of AI, as well as to adopt a critical stance to the technology’s impact. The course introduces critical and ethical issues surrounding data and society, to train the student to problematize and reason about artificial intelligence (AI). You are most likely a designer, innovator, or product manager that works with digital services and products. What will you learn from this course? The course deals with different perspectives on AI and its real and potential effect on organizations and society. The course is based on five different perspectives on AI: accountability, surveillance capitalism, power and bias, sustainability, and trust. The course material consists of recent and relevant literature on the impact of, and critical perspectives on AI. Active discussions founded in different ethical perspectives are also an important part of the course. What is the format of this course? This course is primarily self-paced, with a few synchronous meetings. Most activities are based on the student’s having consumed specified material beforehand, such as video lectures, podcasts, articles, and books. Active discussions, both in online forums and during synchronous meetings, are an important part of the course.
This course looks at where important materials in products we use every day come from and how these materials can be used more efficiently, longer, and in closed loops. This is the aim of the Circular Economy, but it doesn’t happen on its own. It is the result of choices and strategies by suppliers, designers, businesses, policymakers and all of us as consumers. In addition to providing many cases of managing materials for sustainability, the course also teaches skills and tools for analyzing circular business models and promotes development of your own ideas to become more involved in the transition to a Circular Economy. You will learn from expert researchers and practitioners from around Europe as they explain core elements and challenges in the transition to a circular economy over the course of 5 modules: Module 1: Materials. This module explores where materials come from, and builds a rationale for why society needs more circularity. Module 2: Circular Business Models. In this module circular business models are explored in-depth and a range of ways for business to create economic and social value are discussed. Module 3: Circular Design, Innovation and Assessment. This module presents topics like functional materials and eco-design as well as methods to assess environmental impacts. Module 4: Policies and Networks. This module explores the role of governments and networks and how policies and sharing best practices can enable the circular economy. Module 5: Circular Societies. This module examines new norms, forms of engagement, social systems, and institutions, needed by the circular economy and how we, as individuals, can help society become more circular.
In this course, participants are introduced to key notions and concepts evolving in sustainability science that are relevant to all, independent to one's work or field of interest. After having completed the course, participants will have a better understanding of the vocabulary used today and should demonstrate the ability to reflect critically to integrate different perspectives of environmental, social, and economic sustainability to their specific area of interest or research. Throughout the course, links are made to the Agenda 2030 for Sustainable Development, as our current global road map towards sustainability, and how new approaches and solutions are emerging to describe, understand and address key sustainability challenges. Put simply, the overall aim is to give participants the knowledge and confidence needed to present and discuss ideas with others by applying methods, concepts and the vocabulary exemplified in the course with a more holistic view on the sustainability agenda across topics and disciplines. The course is designed as 5 modules: The first module presents essential concepts within sustainability science, and methods used to describe, frame, and communicate aspects of sustainability. We look at key questions such as what we mean with strong or weak sustainability, resilience, tipping points and the notion of planetary boundaries. We also look at some techniques used of envisioning alternative futures and transitions pathways. The second module is all about systems thinking and how systemic approaches are applied today to achieve long-term sustainability goals. Your will see what we mean with systems thinking and how systems thinking, and design is applied in practice to find new solutions. The third module touches upon drivers for a sustainable future, namely links to economy and business with an introduction to notions of a circular economy, and also policy and regulatory frameworks. We introduce the basics of transformative policy frames and how they are designed and applied through several real-case examples. The fourth module discusses the links between innovation and sustainability, highlighting approaches for technological, social, institutional, and financial innovations. Some examples (or cases) aim to show how different actors across society balance in practice the need for innovative approaches for social, environmental, and economic sustainability. The fifth and last module provides general insights on how we work with models to create various scenarios that help us identify solutions and pathways for a more sustainable world. Three main dimensions are addressed namely climate and climate change, nature and biodiversity, and the importance of data and geodata science to support spatial planning and sustainable land use.
In the era of shift towards green transition, industries face unique challenges and generates numerous opportunities. This course, "Intelligent Asset Management and Industrial AI" is designed to equip professionals with the knowledge and tools necessary to support advanced technologies in achieving environmental sustainability. Industries play a major role in contributing to the global economy that is accompanied with a significant share towards environmental degradation. The growing climatic concerns and degradation of natural resources has urged the need to reduce carbon footprints, minimize waste, and optimize resource utilization such that a green transition is achieved. Intelligent Asset Management and Industrial AI are at the forefront of this transformation offering innovative solutions to enhance operational efficiency, reduce environmental impact and support the industry’s commitment to sustainability. Furthermore, the course can help a professional to optimize the usage of resources, look for energy efficient systems, consider environmental changes, develop sustainable solutions, and integrate advanced technologies towards green transition. This is a problem-based course specific to an industrial sector. The problems can be provided by the course supervisor, or the participants can bring their own problems from their work. Common problems include e.g. asset management by balancing cost against performance, identifying, detecting, predicting, and planning for unexpected outages, disruptions or failures, exploring challenges and opportunities with AI and digitisation, monitoring the condition of industrial assets, and achieving sustainability goals. Target groupThe target group includes individuals working in various industries such as railway, mining, transportation, construction, manufacturing, logistics, energy, and other organizations that are or planning to implement asset management systems. This course can be suitable for professionals ranging from asset managers, maintenance and reliability professionals, operation managers, engineers, project managers, and asset management consultants. Online seminarsDecember 10th at 14.00 to 15.00January 14th at 14.00 to 15.00January 31st at 14.00 to 15.00February 13th at 14.00 to 15.00February 28th at 14.00 to 15.00 Entry requirements Bachelor’s degree of at least 180 ECTS or equivalent, which includes courses of at least 60 ECTS in for example one of the following areas: Maintenance Engineering, Mechanical Engineering, Materials Science, Data Science, Computer Engineering, Civil Engineering, Electrical and Electronics Engineering or equivalent. Or professional experience requirements four to five years of experience in relevant industries.