A government mission to create open online education for climate change. Nine higher education institutions in collaboration to create a wide range of education in dialogue with relevant organizations in business and the surrounding society. The assignment is coordinated by Uppsala University. The aim is to enable shorter further education in relevant areas, such as engineering, science, procurement law, computer science and urban social planning etc. The courses developed are presented here.
118 RESULTS
SHOW
SORT BY:
Kursperiod: 3 november 2025 till 31 januari 2026 En avgörande svårighet för den omställning som krävs för att motverka den globala uppvärmningen är oenighet om hur kostnader och ansvar ska fördelas. Detta gäller både globalt och lokalt. Kursen ger dig en inblick i de viktigaste argumenten i debatten om klimaträttvisa och deras rötter i mer grundläggande filosofiska perspektiv. Innehåll Olika synsätt på klimaträttvisa Viktiga argument för och emot dessa synsätt Styrkor och svagheter hos dessa argument Kursens upplägg Hela kursen äger rum digitalt. Kombination av förinspelade föreläsningar, liveföreläsningar (kvällstid), övningar och quizzes. Det krävs en arbetsinsats på ca 12 h för att slutföra kursen. Du kommer att få kunskap om Kursen ger dig kunskap om de viktigaste argumenten i debatten om klimaträttvisa och om hur dessa anknyter till mer grundläggande filosofiska perspektiv. Vi diskuterar olika styrkor och svagheter hos dessa argument. Vem vänder sig kursen till? Kursen vänder till främst till alla yrkesverksamma inom området grön omställning.
Kursperiod 3/11 2025 till 18/1 2026 Batterier har en viktig roll i den gröna energiomställningen både som energilager på nätet och framförallt i elektrifieringen av transportsektorn. Elektrifierande vägtransporter är idag helt beroende av batterier som energilager och batterierna och hur de används har påverkan på fordonens räckvidd. Den här kursen har som mål att ge ökad förståelse av laddning, urladdning och smart kontroll av batterier. Bättre kunskap om batterier, batteristyrningssystem och laddningsoptimering leder till bättre batterianvändning vilket i sin tur leder till mer hållbar användning av både energi och resurser. Innehåll Kursen ska ge en grundkunskap om batterier, batterianvändning och speciellt batteristyrningssystem (BMS). Innehåll: Grundläggande kunskap om batterier och dess användning som energilager. Estimering av state-of-health (SoH) och state-of-charge (SoC). Batteristyrningssystem. Algoritmer för batteristyrning. Anpassning till olika användningsområden och användningsscenarier. Optimering av laddning. Datorsimulering av batteristyrningssystem och analys av resultaten. Kursens upplägg Helt på distans. Förinspelade föreläsningar, digitala föreläsningar (live), hemuppgifter (datorsimuleringar + quiz). Kursen ges på engelska. Det krävs en arbetsinsats på ca 80h för att slutföra kursen. Du kommer att få kunskap om Efter godkänd kurs ska deltagaren kunna: Översiktligt beskriva batteriers uppbyggnad och deras användning som energilager inom transportsektorn och på elnätet, planera och analysera kompletta system för elektrokemisk energilagring där batterier integreras med elektronisk styrning och andra hjälpsystem för avsett användningsområde, diskutera och motivera användningen av olika algoritmer samt tillämpa tekniker för kontroll och styrning av batterisystem för optimal prestanda och livslängd, Genomföra simuleringar av ett kontrollsystem för, och användning av, batterier (batteristyrningssystem (BMS)) och analysera och dra slutsatser från simuleringsresultat. Vem vänder sig kursen till? Yrkesgrupp: Ingenjörer som börjat arbeta med batterier och/eller vill lära sig mer om batterier och batteristyrningssystem. Utbildningsbakgrund: Gärna ingenjörsutbildning. Lämplig bakgrundskunskap: Gärna grundläggande elektroteknik men inget krav.
Kursperiod 1/11 till 19/12 2025 Innehåll Batterivärdekedjan: från processer uppströms till nedströms Åldrande batterier: Hur batterier förändras över tiden och vilka risker det är med. Toxicitet: Fokus på material och deras påverkan på miljö och hälsa. Säkerhetsaspekter: Riskbedömning och hantering av batterier i olika skeden av deras livscykel. Livscykelanalys: Miljö- och hållbarhetsperspektiv. Kursens upplägg Kursen kommer att ske som en synkron onlinekurs (fjärrundervisning) för maximal flexibilitet för deltagarna. Kursen kommer att innehålla onlineföreläsningar, diskussionstillfällen, ett kort individuellt projekt, skriftliga reflektioner. För att slutföra kursen krävs en arbetsinsats på ca 40 h. Du kommer att få kunskap om Kursdeltagaren kommer att lära sig följande: Grunderna för batterisäkerhetsfrågor och toxicitet längs batterivärdekedjan En introduktion till livscykelanalys Kunskaper för hantering av åldrande batterier Vem vänder sig kursen till? Kursen vänder sig till personer inom logistik, automation, energiproduktion och byggsektorn. Främst de som hanterar batterier i fordonsflottor, arbetar med säkerhets- och hållbarhetsfrågor inom fordonsindustrin, arbetar med integration av batterier i lokala och nationella energisystem/infrastruktur. Helst har deltagarna en utbildning inom teknik eller naturvetenskap. Deltagare bör ha vissa förkunskaper om batterier, genom teknisk/naturvetenskaplig universitetsutbildning, eller genom en grundläggande öppen kurs.
Elektronik spelar en allt större roll i mycket av den senaste tekniken, ofta ganska osynlig del i mycket stora system, men kritisk för energiöverföring och energikonvertering (t.ex. i elektriska fordon), eller i energieffektiva system för datorberäkningar, som för AI, mobilnätens infrastruktur, datacenter, m.m. Detta gör elektronik (halvledare) och kunskap inom området till möjliggörare för många delar av ett fossilfritt energisystem. Innehåll Halvledare: grunden för all elektronik, tillverkning, leveranskedjorna som del av världsekonomin. Krafthalvledare i energisystem och för energikonvertering i t.ex. elektriska fordon. Hårdvarulösningar för energieffektiva datorberäkningar, neuromorf teknik. Kursens upplägg Kursen har tre delar (se innehålll), 2-4 föreläsningar per del samt material att läsa in för varje del samt en avslutande inlämningsuppgift (essä). Förinspelade föreläsningar. Diskussionsseminarium online efter varje del (kvällstid, ej obligatoriskt), Inlämningsuppgift (obligatorisk för godkänd kurs). Det krävs en arbetsinsats på cirka 60 h för att slutföra kursen. Du kommer att få kunskap om Användning av halvledare och deras roll i system för fossilfri energi, elektronik för elektriska fordon, tillverkning av halvledare och leveranskedjor, metoder för högre energieffektivitet i hårdvara för beräkningar och AI. Vem vänder sig kursen till? Yrkesverksamma på företag och myndigheter som deltar i eller påverkas av den gröna omställningen till ett fossilfritt energisystem, elektronikens roll och användning i moderna system
The EU’s circular economy strategy increases the need for expertise in the use of sustainable and recycled materials. This course provides tools and knowledge for the use of sustainable materials, development towards sustainability of existing materials, recycled and upcycled materials and how they contribute to the green transition through reduced energy consumption, longer lifespan, reduced costs, reduced waste volumes, better user-friendliness and opportunities for social entrepreneurship. The course will give you the opportunity to work on your own project in your own context and include different creative and practical tools. Course content Part 1: Introduction to the Circular Economy Part 2: Design for Recycling Part 3: Use of Recycled Materials Part 4: Substitution with Sustainable Alternatives Part 5: Conditions for Circular Systems and Economies Course design Open online course with pre-recorded lectures, interview and workshops, with reading, reflection and creative assignments. Self-paced, start and finish when you want to. This course takes about 80 study hours to complete. You will learn How circular economy, material flows and sustainable materials can be understood in a broader sustainability context. Using various tools and models to analyze and improve material flows and product design. Practically apply and implement the knowledge in the course to their own business or a chosen project. Who is the course for? The course is aimed at professionals in industry, waste management, construction, material production, product development, recycling solutions, local and regional government, design and different creative professions. It is also open to students on all levels and participants without an academic background who want to deepen their knowledge in circular economy and sustainable material choices.
Kursperiod: 15 september till 30 november 2025 För att vi som samhälle ska acceptera nödvändigheten i att ställa om till ett fossilfritt energisystem behöver vi först förstå och acceptera mekanismerna bakom växthuseffekten. Många missförstånd och pseudovetenskapliga teorier florerar i debatten, och det är viktigt att dessa inte får stå oemotsagda. Det är också viktigt att de som argumenterar för en grön omställning har korrekta och vetenskapligt underbyggda argument. Lika viktigt som att förstå växthuseffektens orsaker är det att ha en korrekt och nyanserad bild av de tekniker som kan hjälpa oss att realisera ett fossilfritt energisystem. Vilka för och nackdelar finns med olika tekniker och hur kan vi bygga ett hållbart system med hjälp av dessa? Vilka risker finns och hur kan vi mitigera dessa? Innehåll Klimatvetenskapens historia. De fysikaliska principerna bakom växthuseffekten. Olika fossilfria energikällors funktion samt deras för och nackdelar. Klimatrelaterade risker med olika kraftslag. Vetenskapskommunikation i ett klimatperspektiv. Kursens upplägg Kursen bygger i huvudsak på synkrona onlineföreläsningar och diskussioner. Dessa kompletteras med inspelade föreläsningar och instuderingsmaterial. Det krävs en arbetsinsats på ca 60 h för att slutföra kursen. Du kommer att få kunskap om Klimatvetenskapens historia. De fysikaliska principerna bakom växthuseffekten. Olika fossilfria energikällors funktion samt deras för och nackdelar. Klimatrelaterade risker med olika kraftslag. Vetenskapskommunikation i ett klimatperspektiv. Vem vänder sig kursen till? Kursen vänder sig främst till personer med yrken där energisystemet, den grön omställningen och fossilfri energiproduktion kommuniceras och/eller diskuteras, som till exempel beslutsfattare, samhällsdebatörer, kommunikatörer, utbildare, lärare och influensers. Kursen är öppen för alla som vill lära sig mer om dessa frågor.
Learn the fundamentals of EV charging infrastructure and grid interaction in this flexible, teacher-led online course designed for engineers and professionals. This short course deals with the interaction between electric vehicles (EVs) and the power grid, exploring the technical and economic aspects of EV charging. By investigating these topics, you will be well-equipped to assess the technical and economic feasibility of EV charging infrastructure, understand the potential impact of EVs on the power grid, and evaluate the role of smart charging and V2G in a sustainable energy future. Vehicle-Grid Interaction is a module of the larger course Learning Electromobility developed by the Swedish Electromobility Centre in collaboration with five leading Swedish universities. Designed for engineers and professionals in the transport and energy sectors, the course supports lifelong learning by offering in-depth knowledge of the technologies and systems that underpin the transition to electric mobility. To apply for the full course, click here: https://learning4professionals.se/showCourse/536/Learning_electromobility. You can choose which modules to attend, allowing for a tailored learning experience based on your interests and professional needs. Each module includes preparatory materials, three interactive teaching sessions, and assignments that reinforce learning through real-world applications. When you have completed a module, you will receive a certificate indicating your achievements. Content The course Vehicle-Grid Interaction is divided into three parts: Part 1: The Swedish power system Overview of the Swedish electricity market, delving into its regulatory framework and the fundamental components of the power system, such as generation, transmission, and distribution. Understanding of system balance and its critical role in maintaining grid stability. Integration and significance of renewable energy sources within the Swedish power system. Part 2: EV Charging Technologies and Strategies Various types of EV charging stations and their technical specifications are examined, alongside the current state of charging infrastructure deployment, associated statistics, and challenges. The impact of widespread EV charging on the distribution grid is discussed and grid integration solutions like load management and demand response are presented. The concept of smart charging - including Vehicle-to-Grid (V2G) technology - and its benefits for grid stability are covered and illustrated by examples of pilot projects. Part 3: The Swedish Electricity market from an EV perspective This seminar gives an overview of the Swedish electricity market from an EV perspective. We will introduce various components that affect the cost for charging such as electricity price and grid tariffs as well as V2G and other grid services and discuss how the cost may vary depending on charging strategy. Course structure There are 3 live sessions: Monday and Thursday in week 48, and Wednesday in week 49. You will be invited to an introductory lecture in week 39. Each session will be between 13:00-15:00, except the very first session that will be between 13:00-16:00, since it includes an introduction to the full Learning Electromobility course. You will learn The learning outcomes of the course are: Analyze the interplay between the Swedish power system and electric vehicle integration, including the technical, economic, and market implications of EV charging on grid stability and costs. Evaluate and propose advanced EV charging strategies and grid services (e.g., smart charging, V2G) to optimize energy management, enhance grid resilience, and reduce user costs within the Swedish electricity market. Who is this course for? This course is designed for professionals in the engineering and technology sectors.
This course is taught in Swedish. The availability of the electric power system and the risks that exist for the power system are of very high importance for our entire society, not least with regard to moving towards a more sustainable society. This course starts with a jump start of about two hours where you get a quick overview of the topic so you can also decide if you want to go deeper in the course. You will learn about the electric power system in general, with some focus on electricity distribution with problems and challenges in the area, and then more specifically about: Components, determine the lifetime Systems, calculate system availability for two-node systems Power system analysis, calculate system metrics (SAIDI and SAIFI, etc.) Risk analysis, basic elements and how these are often performed The link between sustainability and reliability Life cycle cost (LCC) calculations
As electricity grids evolve, the benefits of batteries have become more apparent and they are now seen as important assets, not only for backup but also as active components supporting grid stability and energy transition. This course is an introduction to the basics of exploring how batteries interact with the grid and emphasizes self-directed learning. You will practice how to: Use basic energy storage models and tools Design and analyze battery storage systems for different applications Use basic battery aging models
Vatten är den i särklass vanligaste miljön på jorden och vad som sker i haven påverkar allt liv på jorden. Även om människan inte bor i eller på vatten så nyttjar vi många ekosystemtjänster från vatten som matproduktion, transporter, elförsörjning och rekreation, och därmed påverkar eller förstör ekosystemen. För att kunna fortsätt nyttja resurser från hav och vatten eller utveckla nya värdekedjor krävs en omställning mot resursutnyttjande utan att riskera viktiga ekosystemtjänster. I denna kurs kommer du lära dig mer om akvatiska ekosystem och hur vi nyttjar och påverkar dem, men också hur resursutnyttjandet kan bli hållbart. Innehåll Grundläggande vattencykel & akvatisk ekologi Ekosystemtjänster från hav och vatten Livsmedelsproduktion, fiske & vattenbruk Havs och vattenplanering "Nature-based solutions", nya råvaror och tjänster Klimatförändringar och framtidens vatten och hav Kursens uppläggKursen ges som förinspelade lektioner och läses i egen takt. Kursen innehåller självrättande quiz för att du ska kunna kolla att du har uppnått inlärningsmålen. För att komma vidare i kursen, och kunna skriva ut ett kursintyg när du är färdig, måste du bli godkänd på quizzarna. Du kommer få kunskap omKursen ger grundläggande kunskaper om akvatiska ekosystem, ekosystemtjänster och hot. Kursen ger även kunskaper och färdigheter för att förstå vad som krävs och kan bidra till en blå omställning av resurser i vatten. Efter genomgången kurs kommer du kunna: redogöra för biologiska samband och olika ekosystemtjänster från akvatiska miljöer och dess betydelse för mänskliga samhällen, analysera hot och målkonflikter mellan olika nyttjanden av akvatiska resurser, förstå hur framtida diversifiering av vatten- och havsanvändning kan skapa en hållbar bioekonomi. Vem vänder sig kursen till?I första hand yrkesverksamma eller personer intresserade av att bli verksamma inom blå näringarna, som fiskare, vattenodlare, turistnäring, eller andra företagare inom den blå sektorn. men även vatten- och fiskerättsägare. Kursen är även relevant för tjänstemän i offentlig förvaltning (kommun-myndigheter) och journalister eller intresserad allmänhet.Kursen ges i huvudsak på svenska.
Learn the fundamentals of electromobility in this flexible, teacher-led online course designed for engineers and professionals who want to build a solid understanding of electromobility. Learning Electromobility is a live, teacher-led online course developed by the Swedish Electromobility Centre in collaboration with five leading Swedish universities. Designed for engineers and professionals in the transport and energy sectors, the course supports lifelong learning by offering in-depth knowledge of the technologies and systems that underpin the transition to electric mobility. Spanning ten weeks and divided into five specialised modules, the course covers both personal electric vehicles and electric trucks, ensuring a broad and practical understanding of the entire electromobility ecosystem. You can choose which modules to attend, allowing for a tailored learning experience based on your interests and professional needs. Each module includes preparatory materials, three interactive teaching sessions, and assignments that reinforce learning through real-world applications. When you have completed a module, you will receive a certificate indicating your achievments. The course is administered by Linköping University, which provides the learning platform used in the course. Content The course is divided into five modules, each focusing on a specific aspect of electromobility. Below is a brief overview of the modules: Module 1: EV Energy Management and ControlUnderstand how energy is consumed and managed in electric vehicles. Learn modeling, simulation, and control strategies like Equivalent Consumption Minimization Strategy and dynamic programming. Module 2: Electric Drives and ChargingExplore electric motors, power electronics, and charging systems. Includes design studies and simulation tools for powertrains and infrastructure. Module 3: EV Energy StorageDive into batteries and fuel cells, from electrochemistry to integration and safety. Covers Li-ion, Na-ion, and next-gen storage technologies. Module 4: EV SustainabilityExamine the environmental and societal impacts of EVs. Topics include life cycle analysis, battery recycling, how logistics systems need to be adapted, and how adjusted business models can be made to fit with electrification. Module 5: EV Charging Infrastructure and Grid InteractionLearn about the Swedish power system, smart charging, V2G, and how EVs interact with the grid. Includes economic and regulatory perspectives. Course structure Choose from 5 independent modules, 2 weeks each. There are 3 live sessions per module, 120 minutes each. Each module will have the following timeslots for the session: Monday and Thursday module week 1, Wednesday module week 2. Each session will be between 13:00-15:00, except the very first session that will be between 13:00-16:00, since it includes an introduction to the course. You will learn General learning outcomes for the course: Explain the key technologies and principles underlying electric vehicles, including energy storage, electric drives, and vehicle energy management. Analyze the technical, economic, and environmental impacts of electric vehicle systems across their lifecycle, including integration with the power grid. Evaluate solutions for sustainable electromobility by applying systems thinking to vehicle design, energy usage, charging infrastructure, and societal adaptation. Who is this course for? This course is designed for professionals in the engineering and technology sectors. This course is developed jointly by Chalmers University of Technology, KTH, Linköping University, Lund university and Uppsala University.
This course has a Swedish version. Look for a course with the title "Varför välja trä till nästa byggprojekt?" Course DescriptionDifferent types of biomaterials (e.g., wood) are crucial in the challenge of decarbonizing the built environment and reducing the carbon footprint of buildings and infrastructure by replacing materials like steel and cement, which have high carbon dioxide emissions. At the same time, we must not forget that it is important to preserve biodiversity and the social values of our forests. The 13 modules of the course cover many forestry related subjects, including harvesting methods, biodiversity, forest management, logistics, the role of forests in the climate transition, carbon storage, environmental benefits of multi-story buildings with wood, and more. The goal is that participants will gain a shared understanding of Swedish forestry so that they can make well-informed decisions about material choices for their next construction project. Course PeriodThe course will be active for 3 years. ContentForest history: The utilization of forests in Sweden throughout the past yearsForestry methods and forest managementForest regenerationWood propertiesForest mensurationForest tree breedingThe forest's carbon balanceBusiness models and market development: Focus on wood high risesNature conservation and biodiversity in the forest Course StructureThe course is fully digital with pre-recorded lectures. You can participate in the course at your own pace. Modules conclude with quizzes where you can test how much you have learned.You will learn aboutUpon completion of the course, you will have learned more about various forest-related concepts, acquired knowledge of forest utilization in Sweden throughout the past years, increased your understanding of forest management and how different management methods affect biodiversity in the forest, and learned about the forestry cycle—from regeneration to final harvesting, etc. Who is this course for?This course is designed for professionals such as architects, municipal employees working with urban planning and construction, individuals in the construction and civil engineering sector, and those in other related fields. This is an introductory course and will contribute to upskilling of the entire construction sector, thereby increasing the industry's international competitiveness while also providing important prerequisites for the development of future sustainable, beautiful, and inclusive cities. Since the course is open to everyone, we hope that more groups, such as students, doctoral candidates, forest owners, and others with an interest in forestry, will take the course and engage with inspiring lectures where scientific knowledge primarily produced within SLU (Swedish University of Agricultural Sciences) is presented.For more iformation contact course coordinator dimitris.athanassiadis@slu.se