Search

Luleå University of Technology

Luleå University of Technology experiences rapid growth with world-leading expertise within several research domains. Our research is carried out in close collaboration with companies such as Bosch, Ericsson, Scania, LKAB, SKF as well as with leading international universities and national and regional actors. Luleå University of Technology has a total turnover of SEK 1.9 billion per year. We currently have 1, 815 employees and 19, 155 students.

29 RESULTS

Demystifying Business Models  for New Entrepreneurs

Starting a business? Learn how to create a business model that ensures your new entrepreneurial venture is successful. Discover and analyse successful business models before developing your own Discover business management tools for building a business model Build essential skills for starting a business This course is designed for anyone who wants to boost their business development skills and learn how to create a successful business model. It will be particularly useful if you are about to start your own business, you’re struggling with your business model, or you need to reinvent your current business model. The course will be given in English.

Design of electric drive systems for industrial applications and electric vehicles

Electric drive systems are central to the transition toward sustainable transport and industrial solutions. Efficient design and implementation of drive systems can reduce energy consumption and improve performance. This course covers the fundamentals of designing and optimizing electric drive systems for various applications. Course Content Principles of electric drive systems Design for energy efficiency and performance Applications in industry and electric vehicles What You Will Learn Design electric drive systems for different applications Optimize systems for energy efficiency and sustainability Analyze challenges and opportunities in electric drive systems Who Is the Course For? The course is tailored for engineers and developers in the transport and manufacturing industries, as well as professionals working with the electrification of vehicles and industrial systems. Language The course is conducted in English. Additional information The course includes 65 hours of study and is offered for a fee.

Design of integrated circuits

Integrated circuits are central to many of today’s technologies, and their design can significantly impact energy efficiency and sustainability. This course introduces techniques for designing integrated circuits with a focus on environmental aspects. Course content Basic design principles for integrated circuits Energy-efficient solutions for electronics designSustainability in integrated circuit development What you will learn Design integrated circuits with a focus on energy efficiency Implement sustainable solutions in the electronics industry Understand the connection between circuit design and environmental impact Who is the course for? The course is designed for electronics developers, engineers, and technicians working with circuit design who want to focus on sustainability and energy efficiency in their solutions. LanguageThe course is conducted in Swedish and English. Additional informationThe course is offered for a fee.

Edge computing in robotics

Edge computing enables faster and more energy-efficient data processing directly at the source. In robotics, this can lead to improved performance and sustainability. This course introduces the concept of edge computing and its applications in robotics. Course content • Fundamentals of edge computing• Applications of edge computing in robotics• Energy-efficient solutions for data processing What you will learn • Understand the principles of edge computing• Implement edge computing in robotic systems• Optimize data processing for energy efficiency Who is the course for?The course is designed for engineers, developers, and technicians working with robotics, IoT, and data processing who want to implement energy-efficient solutions in their projects. LanguageThe course is conducted in English. Additional informationThe course includes 15 hours of study and is offered for a fee.

Everything is material - material is everything

Materials are all around us, in your house, in your phone and in the air you breathe. But what is material and why is it so important? Right now, the green transition is underway, but how do we create a more sustainable world - from raw material to product? It's all about materials. How does material feel? How are materials chosen? What are the materials of the future? Join us and discover our world of materials! The course containsIn this course we go through the basics of what materials are and why they are so important. You get to discover materials, get to know materials and be inspired by the materials of the future. The following areas are included in the course: What is material? How does material feel? How are materials chosen? How are materials recycled? What are the materials of the future? You will learnAt the end of the course you should be able to: Discover and reflect on the world and meaning of materials Get a feel for different materials Discover and analyze materials in your vicinity Understand that different materials are chosen based on the area of use Understand and reflect on the possibilities of materials and their role in the green transition Who is the course for?This is a course suitable for EVERYONE who is curious about the materials in their surroundings, regardless of background and age. The course requires no prior knowledge. It is for those of you who have an interest in a sustainable future and who wonder what role materials have in the green transition. The course is given in Swedish.

Exploring sustainable production systems

Our society must shift to sustainable production. The production systems need to be developed in line with the global goals set by the UN and that have been agreed on by the countries. Sustainable production is about producing with, preferably, positive impact, but usually at least as little negative impact as possible, on people and our planet. This three-week course introduces you to sustainable production systems and helps you understand them from economic, social and ecological perspectives. The course begins with an exposé of how production systems have developed historically. You will learn about the UN Sustainable Development Goals. The course continues with an in-depth study of production systems, covering some prominent people and theories in the field. Next, you will learn about current developments in production innovation and Industry 4.0. You will also meet two companies in the manufacturing industry, Polarbröd and Sandvik Coromant, and see examples of how they work with sustainable production. The course concludes by giving you tools to design sustainable production systems. The course is aimed at anyone curious about sustainable production and how industrial production can be developed to become more sustainable. The course will be given in English.

Flow measurement for optimized energy use

Efficient energy use is a crucial part of sustainability efforts. Accurate flow measurement of liquids and gases can optimize energy consumption and streamline processes. This course teaches techniques and tools for implementing flow measurement in various applications. Course content Fundamentals of flow measurement technologyEnergy optimization through flow analysisPractical applications in industry and energy sectors What you will learn Use flow measurement to optimize energy consumptionEvaluate and implement measurement tools for different processesUnderstand how flow measurement impacts sustainability and energy efficiency Who is the course for? The course is designed for engineers, technicians, and production managers working with process optimization and energy efficiency in industrial settings. LanguageThe course is conducted in Swedish. Additional informationThe course includes 30 hours of study and is offered for a fee.

Fossil-free steel production

The steel industry is one of the largest sources of carbon dioxide emissions globally. With the introduction of fossil-free manufacturing processes, the industry can take significant steps toward a sustainable future. This course introduces the fundamentals of fossil-free steel production, focusing on techniques and processes to reduce climate impact. Course content Introduction to fossil-free steel production Use of hydrogen in steel manufacturing Climate impact and sustainability aspects What you will learn Understand the basics of fossil-free steel production Analyze the climate impact of traditional steel manufacturing Identify key factors for implementing fossil-free processes Who is the course for? The course is designed for engineers, technicians, and decision-makers in the steel and manufacturing industries. It is also suitable for researchers and students interested in understanding and working with fossil-free technology in steel production. Language The course is conducted in Swedish and English. Additional information The course includes 60 hours of study and is offered for a fee.

Fossil-free steel production II

Deepening knowledge of advanced techniques and processes for fossil-free steel production is essential for taking the next step toward a carbon-free industry. This course focuses on optimizing and implementing innovative solutions in the manufacturing process. Course Content Advanced techniques for fossil-free steel production Implementation of hydrogen-based processes Efficiency and optimization in steel manufacturing What You Will Learn Understand and apply advanced processes for fossil-free steel production Optimize manufacturing processes to reduce energy consumption Contribute to the transition toward a sustainable steel industry Who Is the Course For? The course is designed for professionals in the steel industry, researchers, and technical specialists with basic knowledge of fossil-free manufacturing who want to deepen their understanding of advanced techniques. Language The course is conducted in Swedish and English. Additional Information The course includes 60 hours of study and is offered for a fee.